Actions MICROELECTRONICS Co., Ltd.

Actions-micro AM8360D Datasheet

Document Number: AM8360D Datasheet Revision 1.0.0 Release date: 11/09/2021

Actions Microelectronics Co., Ltd. 701, 7floor, Golder Plaza, No.10 huayuandonglu, Haidian District, Beijing, China

Declaration

Circuit diagrams and other information relating to products of Actions Microelectronics Company, Ltd. ("Actions-micro") are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been examined and is believed to be accurate, Actions-micro makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and disclaims any responsibility for inaccuracies. Information in this document is provided solely to enable use of Actions-micro' products. The information presented in this document does not form part of any quotation or contract for sale. Actions-micro' products, except as may expressly be provided in Actions-micro' Terms and Conditions of Sale for such products. All sales of any Actions-micro products are expressly conditional on your agreement to the terms and conditions of the most recently dated version of Actions-micro' Terms and Conditions of Sale Agreement dated before the date of your order.

The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights, copyright, trademark rights, rights in trade secrets and/or know how, or any other intellectual property rights of Actions-micro or others, however denominated, whether by express or implied representation, by estoppel, or otherwise.

Information contained herein relates solely to the Actions-micro products described herein and abrogates and supersedes, as of the release date of this publication, all previously published data and specifications relating to such products provided by Actions-micro or by any other person purporting to distribute such information. Actions-micro reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your Actions-micro sales representative to obtain the latest specifications before placing your product order. Actions-micro product may contain design defects or errors known as anomalies or errata which may cause the products functions to deviate from published specifications. Anomaly or "errata" sheets relating to currently characterized anomalies or errata are available upon request. Designers must not rely on the absence or characteristics of any features or instructions of Actions-micro' products marked "reserved" or "undefined." Actions-micro reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Actions-micro' products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of Actions-micro and further testing and/or modification will be fully at the risk of the customer.

ACTIONS-MICRO DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE.

IN NO EVENT SHALL ACTIONS-MICRO BE RELIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF ACTIONS-MICRO OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER ACTIONS-MICRO HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR NOT.

Copyright © Actions Microelectronics Co., Ltd 2010. All rights reserved.

Table of Contents

Terms and Acronyms General Conventions

Dec	Declaration			
1	Introduction	8		
1	.1 Overview	.8		
2	Feature	10		
3	Power on Sequence	13		
4	Pin Out Specification	14		
4	.1 Pin out diagram1	18		
5	Operating Conditions	19		
6	Crystal Requirements	20		
7	Mechanical Specification	21		

Revision History

Version	Date	Description	Author
1.0.0	11/10/2021	Initial Create	maweishuo

Terms and Acronyms

Terms and Acronyms	Definition
CF	Compact Flash
SM	Smart Media
XD xD picture	
SD	Secure Digital
Micro SD	Micro Secure Digital
MS	Memory Stick
MS Pro	Memory Stick Pro
MMC	Multimedia Card
SDRAM	Synchronous Dynamic Random Access Memory
MD	MicroDrive
TF T Flash	
LCD	Liquid Crystal Display
ICE In-circuit emulation, or in-circuit emulator	
JTAG	Joint Test Action Group(ANSI/ICEEE Std.11149.1-1990)
PQFP	Plastic Quad Flat Package
LQFP	Low-Profile Quad Flat Package
BGA	Ball Grid Array
PIP	Picture In Picture
ТАР	TEST ACCESS PORT
RGB Red-Green-Blue color space representation	
TCON	Timing controller

General Conventions

Symbol	Description	Notes			
Note					
	In the notes column, an H indicates the pin is hidden behind the actual physical pin listed				
Н	in the Alternate Functions column and is not included in the pin count. No H indicates the				
	actual pin is listed in the Signal Name column and the Alternate Functions column lists				
	the alternate signals present on the pin.				
Pad GP					
1	Pad group 1				
2	Pad group 2				
Dir/Pol (dir	rection/polarity)				
Ι	Input				
0	Output				
В	Bidirectional				
Ζ	Three state output				
Pad Type					
А	Analog pad				
В	Bidirectional				
BS	Bidirectional with Schmitt trigger				
Н	High-voltage(up to 3.0 V)tolerant digital input				
Ι	CMOS input				
IA	Analog input				
IS	Input with Schmitt trigger				
К	Contains an internal weak keeper device				
0	Output				
OA	Analog output				
OD	Open-drain				
PD	Contains an internal pull-down device				
	Can be programmed to non pull, pull down or pull up. The default value is no pull after				
PP[NP]	reset.				
	Can be programmed to non pull, pull down or pull up. The default value is pull down after				
PP[PD]	reset.				
	Can be programmed to non pull, pull down or pull up. The default value is pull up after				
PP[PU]	reset.				
PU	Contains an internal pull-up device				
PWR	power				
Ζ	High-Z output				
Drive (mA)	Drive (mA)				
n	Variable drive strength pins.				

1 Introduction

1.1 Overview

The AM8360D processor from Actions-Micro is a highly integrated mix signal SoC target at multi-media applications. The AM8360D emmedded CPU is a high performance, low power 32bit RISC core with DSP instruction extension, which can run as fast as 700MHz.

The AM8360D processor features a hardwired multi-format video encoder, which supports a large variety of popular video formats including: H.264 at full HD resolution.

The AM8360D integrated lossless or near-lossless image/video compress and de-compress module which can transfer 1080P video with format RGB888 through 1Gbit/s Ethernet.

The AM8360D multi-media processor provided display solutions with the help of on chip HDMI transmitter and receiver interface.

AM8360D is also integrated with 1 USB OTG controllers, UART, I2C, SPI, etc.

There is a 512Mb DDR2 memory die integrated in AM8360D, so no need to hang a DDR2 memory on PCB.

Block Diagram

AM8360D BLOCK DIAGRAM

2 Feature

The AM8360D provides high level of system integration to support a wide variety of applications. The features of the AM8360D include:

✓ 32BIT RISC CORE

- 32K byte instruction cache and data cache
- F/W can program from DC up to 800MHz transparently
- DSP instruction for multi-media acceleration
- Static design allows changing clock at run-time for power saving

✓ VIDEO ENCODER

- Support ISO/IEC 14496-10/YU-T Rec.H.264
- Base Profile,Level 1-5.1
 - Main Profile ,levels 1-5.1
 - High Profile ,levels 1-5.1
- Support JPEG ITU-T Rec.T81(09/92), Baseline interleaved/JFIF
- 60 frames per second at 1920x1080 resolution for video all format

✓ IMAGE/VIDEO COMPRESSOR

- Support upto 1080P Resolution
- Support 8bit YCbCr 4:2:2 & YCbYCr/RGB
- Adaptive compress ratio up to 1:6
- Lossless or Near-lossless compress

✓ OSD

- 1,2 OSD bitmap data width
- 256x128 size in 2 bit or 256x256 in 1 bit

✓ DISPLAY INTERFACE

- HDMI Tx support, industry standard compliance HDMI 1.2
- HDMI Rx support, industry standard compliance HDMI 1.3a

✓ AUDIO

- I2S IN & I2S OUT interface
- Support 32 levels volume control
- ✓ Ethernet MAC
 - Support MII/RMII/RGMII up to 1Gbps rate
 - Support SDIO interface for WIFI transfer

✓ Transfer Schedule Manager

- Transfer compressed video/audio data through Ethernet
- Receive compress video/audio data through Ethernet
- The transferred video upto 1920x1080 60fs

✓ MEMORY Storage

- Integrated with a 16x 512Mb DDR2 die which is up to 1066Mbps
- OTP ROM 64bit Chip ID

✓ DMA CONTROLLER

- 8 physical channels and 4 bus channels
- Stride mode support
- Software configurable priority

✓ Boot ROM

- On chip boot ROM with boot loader
- The system could be loaded from SPI Nor flash

✓ USB 2.0 OTG

- Complies with Universal Serial Bus Specification. Revision 2.0.
- Complies with On-The-Go Supplement to the USB2.0 Specification Revision 1.0a.
- Supports point-to-point communication with one low-speed, full-speed or high-speed device in Host mode.
- Supports full-speed or high-speed in peripheral mode.
- Supports USB Mass Storage Class Bulk-Only Transport Revision 1.0 as host or device.
- Supports Electronic still picture imaging Picture Transfer Protocol (PTP)
- Supports direct print function using pict-bridge
- Supports Universal Serial Bus Device Class Definition for Printing Devices Version 1.1 as host
- Supports Universal Serial Bus Still Image Capture Device Definition Revision 1.0 as host
- Configurable/programmable size of endpoints.
- Configurable/programmable single, double, triple or quad buffering.
- Programmable type of endpoints.
- Supports high-speed high-bandwidth Isochronous and Interrupt transfer.
- Supports suspend, resume and power managements function.
- Support USB wakeup

✓ OTHER INTERFACE

- UART/I2C/SPI
- 3 external interrupts
- 35 configurable GPIO shared with function pins

✓ POWER

- 1.3v for core

- 3.3v/2.5v/1.8/1.5v for mac io,3.3v for others
- Core PLL, LCD PLL, Audio PLL and DDR PLL support spread spectrum

✓ PACKAGE

- QFN 88pin (epad), 10x10mm

3 Power on Sequence

The power on sequence requirements of the AM7xxx and AM8xxx products are the same, which are shown in the following figure. VDD represents the power pins supplying power for the core. VCC represents the power pins supplying power for the general purpose pads. SVCC represents the power pins supplying power for the DDR2 or DDR3 SDRAM related pads. P_RESETB is the asynchronous reset pin. PWROK is an internal signal. It is low during the power-on phase to reset all the registers in the chip. The system boots at the moment when PWROK turns to high.

Figure 1 Power on Sequence Diagram

Timing Requirements:

- 1. $T1 \ge 20ms$
- 2. $T2 \approx 128ms$
- 3. T3 is equal to the greater one between T1 and T2
- 4. The power on sequence of VDD/VCC/SVCC is not cared

4 Pin Out Specification

Pin out table

PIN NUM	PIN NAME	Function
1	HOSCI	HOSCI
2	HOSCO	HOSCO
3	AVCC2	AVCC2
4	VDD	VDD
5	EXT_R	EXT_R
6	AVDD33	AVDD33
7	RXCN_CH	RXCN_CH
8	RXCP_CH	RXCP_CH
9	RXON_CH	RX0N_CH
10	RXOP_CH	RX0P_CH
11	RX1N_CH	RX1N_CH
12	RX1P_CH	RX1P_CH
13	RX2N_CH	RX2N_CH
14	RX2P_CH	RX2P_CH
15	AVDD12	AVDD12
16	P_CECRX	CEC_DAC
17	P_I2C1SCL	I2C1SCL
18	P_I2C1SDA	I2C1SDA
19	VCC1	VCC1
20	P_RESETB	RESETB
21	P_UARTTX1	UARTTX1
22	P_UARTRX1	UARTRX1
23	P_MACRER	GPIO1/RMII_RXER
24	P_MACRVLD	GPIO2//RMII_CRS_DV
25	P_MACMDIO	GPIO3/MACMDIO
26	P_MACMDC	GPIO4/MACMDC
27	P_MACTVLD	I2SSCK/RMII_TXEN
28	P_MACTD1	I2SSD/RMII_TXD1
29	P_MACTD0	I2SWS/RMII_TXD0
30	P_MACTCLK	GPIO8
31	VCCO(2.5V)	VCC0(2.5V)
32	P_MACRD1	I2C0SCL/RMII_RXD1
33	P_MACRD0	I2C0SDA/RMII_RXD0
34	P_MACTD2	SDD3/GPIO11
35	P_MACTD3	SDD2/GPIO12

36	P_MACRD2	SDD1/I2SSCK
37	P_MACRD3	SDD0/I2SSD
38	P_MACTER	SDCMD/I2SWS
39	P_MACRCLK	SDCLK/RMII_REFCLK
40	VDD	VDD
41	AVCC	AVCC
42	VBUSO	VBUS0
43	DMO	DM0
44	DPO	DP0
45	UVCCO	UVCC0
46	P_DRVVBUS0	DRVVBUS0
47	P_I2COSCL	DDCSCL
48	P_I2COSDA	DDCSDA
49	VCC2	VCC2
50	P_UARTRX0	UARTRX0
51	P_UARTTX0	UARTTX0
52	VDD	VDD
54	SVCC	SVCC
55	VDD	VDD
56	R_VREF	
57	R_VDD	
58	SVCC	SVCC
64	VDD	VDD
69	SREF	SREF
68	R_VDD	
75	SVCC	SVCCI
74	R_VDD	
78	VDD	VDD
79	R_VDD	
80	SVCC	SVCC
81	VDD	VDD
82	P_IRTX	IRTX
83	P_SPIMISO	SPI_MISO
84	P_SPIMOSI	SPI_MOSI
85	P_SPICLK	SPI_CLK
86	P_SPINSS	SPI_NSS
87	VCC3	VCC3
88	DVCC_PLL	AVCC_PLL2

PIN NUM	PIN NAME	ТҮРЕ	Function	
1	HOSCI	А	HOSCI	
2	HOSCO	А	HOSCO	
3	AVCC2	PWR	AVCC2	
4	VDD	PWR	VDD	
5	EXT_R	А	EXT_R	
6	AVDD33	PWR	AVDD33	
7	RXCN_CH	А	RXCN_CH	
8	RXCP_CH	А	RXCP_CH	
9	RX0N_CH	А	RX0N_CH	
10	RX0P_CH	А	RX0P_CH	
11	RX1N_CH	А	RX1N_CH	
12	RX1P_CH	А	RX1P_CH	
13	RX2N_CH	А	RX2N_CH	
14	RX2P_CH	А	RX2P_CH	
15	AVDD12	PWR	AVDD12	
16	P_CECRX	А	CEC_DAC	
17	P_I2C1SCL	В	I2C1SCL	
18	P_I2C1SDA	В	I2C1SDA	
19	VCC1	PWR	VCC1	
20	P_RESETB	В	RESETB	
21	P_UARTTX1	В	UARTTX1	
22	P_UARTRX1	В	UARTRX1	
23	P_MACRER	В	GPIO1/RMII_RXER	
24	P_MACRVLD	В	GPIO2//RMII_CRS_DV	
25	P_MACMDIO	В	GPIO3/MACMDIO	
26	P_MACMDC	В	GPIO4/MACMDC	
27	P_MACTVLD	В	I2SSCK/RMII_TXEN	
28	P_MACTD1	В	I2SSD/RMII_TXD1	
29	P_MACTD0	В	I2SWS/RMII_TXD0	
30	P_MACTCLK	В	GPIO8	
31	VCC0(2.5V)	PWR	VCC0(2.5V)	
32	P_MACRD1	В	I2C0SCL/RMII_RXD1	
33	P_MACRD0	В	I2C0SDA/RMII_RXD0	
34	P_MACTD2	В	SDD3/GPIO11	
35	P_MACTD3	В	SDD2/GPIO12	
36	P_MACRD2	В	SDD1/I2SSCK	
37	P_MACRD3	В	SDD0/I2SSD	
38	P_MACTER	В	SDCMD/I2SWS	
39	P_MACRCLK	В	SDCLK/RMII_REFCLK	
40	VDD	PWR	VDD	

41	AVCC	PWR	AVCC
42	VBUS0	А	VBUS0
43	DM0	А	DM0
44	DP0	А	DP0
45	UVCC0	PWR	UVCC0
46	P_DRVVBUS0	В	DRVVBUS0
47	P_I2C0SCL	В	DDCSCL
48	P_I2C0SDA	В	DDCSDA
49	VCC2	PWR	VCC2
50	P_UARTRX0	В	UARTRX0
51	P_UARTTX0	В	UARTTX0
52	VDD	PWR	VDD
54	SVCC	PWR	SVCC
55	VDD	PWR	VDD
56	R_VREF	PWR	R_VREF
57	R_VDD	PWR	R_VDD
58	SVCC	PWR	SVCC
64	VDD	PWR	VDD
69	SREF	PWR	SREF
68	R_VDD	PWR	R_VDD
75	SVCC	PWR	SVCCI
74	R_VDD	PWR	R_VDD
78	VDD	PWR	VDD
79	R_VDD	PWR	R_VDD
80	SVCC	PWR	SVCC
81	VDD	PWR	VDD
82	P_IRTX	В	IRTX
83	P_SPIMISO	В	SPI_MISO
84	P_SPIMOSI	В	SPI_MOSI
85	P_SPICLK	В	SPI_CLK
86	P_SPINSS	В	SPI_NSS
87	VCC3	PWR	VCC3
88	DVCC_PLL	PWR	AVCC_PLL2

4.1 Pin out diagram

AM8360D PIN-OUT DIAGRAM

5 Operating Conditions

SYMBOL	PARAMETER	RATING	UNITS
Vcc	Power Supply (3.3V)	3.8	V
Vsvcc	Power Supply (1.5V)	1.575	V
V _{dd}	Power Supply (1.35V)	1.4	V
VIN	Input Voltage	-0.5~4.6	V
Vout	Output Voltage	-0.5~4.6	V
Тѕтс	Storage Temperature	0~75	°C
Та	Operation Temperature	0.70	Ŷ
IC	(Case Surface)	0~70	C
Ta Ambient Temperature		0~60	°C

Absolute Maximum Ratings

Recommended Operation Conditions

SYMBOL	PARAMETER	MIN	ТҮР	ΜΑΧ	UNITS
Vcc	Power Supply (3.3V)	3.0	3.3	3.6	V
Vsvcc	Power Supply (1.5V)	1.425	1.5	1.575	V
Vdd	Power Supply (1.35V)	1.3	1.35	1.4	V
Ta	Ambient Temperature	0	35	60	°C

DC Electrical Characteristics for 3.3 volts operation

(Under Recommended Operating Conditions and Vcc = 3.0V~3.6V, Tj = 0 to +70) $\,\,^\circ\mathbb{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	UNITS
VIL	Input Low Voltage				0.8	V
Vін	Input High Voltage		2.2			V
VT-	Schmitt Input Low Voltage				0.9	V
V _{T+}	Schmitt Input High Voltage		1.9			V
Vol	Output Low Voltage	4mA			0.4	V
Vон	Output High Voltage	4mA	2.4			V

6 Crystal Requirements

Requirements for 24MHz oscillator.

Description	Specification Requirement
Nominal Frequency	24MHz
Oscillation Mode	Fundamental
Frequency Tolerance at 25 $^\circ \!\!\! \mathbb{C}$	\pm 30ppm
Temperature Stability	\pm 50ppm
Shunt Capacitance (Co)	7pF (max)
Load Capacitance (CL)	12pF~18pF
Equivalent Series Resistance (ESR)	50ohm (max)
Drive Level	500uW (max)
Aging (at 25℃)	\pm 3ppm/year
Insulation Resistance	10meg
Net Weight	This will be various. No limitation.
Operating Temperature Range	-10~85℃
Storage Temperature Range	-45~125℃

Requirements for 32.768KHz oscillator.

Description	Specification Requirement
Nominal Frequency	32.768KHz
Oscillation Mode	Fundamental
Frequency Tolerance at 25°C	\pm 30ppm
Temperature Stability	\pm 50ppm
Shunt Capacitance (Co)	7pF (max)
Load Capacitance (CL)	12pF~18pF
Equivalent Series Resistance (ESR)	50ohm (max)
Drive Level	500uW (max)
Aging (at 25℃)	\pm 3ppm/year
Insulation Resistance	10meg
Net Weight	This will be various. No limitation.
Operating Temperature Range	-10~85℃
Storage Temperature Range	-45~125℃

7 Mechanical Specification

